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Virtual Network Embedding Problem
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(a) Vary-sized VNRs arriving at the network system are considered as different tasks following 𝑀!	~	𝑝(𝑀) 
• First train a meta-policy 𝜋" in the meta-learning process with a curriculum scheduling strategy
• Then, Fine-tune it to obtain a set of size-specific sub-policies 𝜋#! 

(b) Within each inner loop, (use sub-policy 𝜋#$ for example)
• Formulate the solution construction process of each VNR as a bidirectional action-based MDP
• Design a hierarchical encoder with a bilevel policy to decide virtual and physical node

A critical resource allocation task in network virtualization

• User network service → Virtual network requests (VNR)

• Underlaying infrastructure → Physical network

Maps VNRs to physical network while satisfying QoS constraints

Motivations & Challenges Inspired by Preliminary Study

NP-hard Combinatorial Optimization Problem
The solution space of VNE is extensive

Specific requirements of user service are diverse
Dynamic VNR topologies and dynamic demands

Combinatorial 
Explosion

Differentiated 
Demands

A. Flexibility of Action Space

B. Generalization of Solving Policy

AI for 
Networking

Existing 
Methods

They employ a unidirectional action design, i.e., assuming
that decision sequence of virtual nodes is predetermined

Preliminary 
Study

Figure 4 reveals that varying the decision sequences of 
virtual nodes significantly impacts performance

Intuitive
Direction

Achieve a joint selection of both physical and virtual nodes 
to enhance the flexibility of exploration and exploitation

Latent
Challenges

The difficulty of variable action prob distribution generation 
The training efficiency issue caused by large action space

Existing 
Methods

They typically use a one-size-fits-all policy to tackle VNRs of 
varying sizes, leading to generalization issues

Preliminary 
Study

Figure 5 reveals that some size-specific policies are superior 
or to single-policy, while some are inferior.

Intuitive
Direction

Train a set of sub-policies directly to handle VNRs of 
different sizes from scratch

Latent
Challenges

Specific policies trained from scratch encounter local optima
How to quickly adapt to handle previously unseen VNR sizes

RL-based Methods
Automatically build 

efficient solving policies

Exact methods
Expensive time 
consumption

Heuristics
Heavily rely on 
manual designs

VNE
Algorithms

A. Bidirectional Action-based MDP
Joint selection of virtual & physical nodes

Enhance the flexibility of agent 
exploration and exploitation

B. Hierarchical Policy Architecture
High-level ordering policy

Select the appropriate virtual node for 
the low-level placement.

Low-level placement policy
Identify a suitable physical node for 
placing to-be-placed virtual node

Distribution Size: |𝑵𝒗|×|𝑵𝒑| → 𝑵𝒗 + 𝑵𝒑

Adaptively generate action prob dists 
and ensure high training efficiency.

C. Generalizable Training Method
Meta-RL for VNE

Formulate varying VNRs as distinct MDPs 
based their size. 

Adopt model-agnostic meta-learning 
(MAML) as the basic training method

Curriculum Scheduling Strategy
Training large-size policies from scratch 

adversely impacting meta-learning
Gradually increase the complexity of 

tasks during RL training
Effectively obtain refined solving policies 

for each VNR size

Performance Evaluation Conclusion

FlagVNE Framework

Preliminary Study

Extensive Experiments

Existing methods are limited by the unidirectional 
action design and one-size-fits-all training strategy
Result in restricted searchability and generalizability

A bidirectional action-based MDP model
• Jointly select of virtual and physical nodes
• Superior searchability and proven theoretically
A hierarchical decoder with a bilevel policy
• ensure adaptive action prob dist generation
• ensure high training efficiency
A meta RL-based training method
• efficient obtain multiple size-specific policies
• quick adaptation to new sizes
A curriculum scheduling strategy
• gradually incorporates larger VNRs
• alleviate suboptimal convergence

Ablation Study

Overall Performance

Additional Evaluation

Running Time Test

Adaptation and Convergence 
Analysis

Scalability Validation

Hyperparameter Sensitivity

Experiment Setup
Network topologies

GEANT & WX100

VNR Size Distribution

 from 2 to 10

Each simulation run

Random 1000 VNRs

Performance Metrics

RAC & LAR & LT-R2C
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(a) Generalizable training method for obtaining multiple size-specific sub-policies

(b) Bidirectional action-based MDP modeling within each inner loop (sub-policy ##& 	for example)
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