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Background | Network Virtualization

Enable the dynamic management of Internet architecture (e.g., 5G networks and cloud computing)

Specialized Applications Virtualized Resource
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Maps VNRs to physical network with minimal resource cost while satisfying various constraints
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Background | Virtual Network Embedding Problem

NP-hard Combinatorial Optimization Problem

The extensive solution space requires comprehensive exploration

Specific requirements of user service are diverse

VNRs have varied sizes and resource requirements

Combinatorial 
Explosion

Differentiated 
Demands

Problem 
Characteristics

Node Mapping Link Mapping

Assign each virtual node to a 
physical node with sufficient 

resources

Finding connective physical 
paths for virtual links 

between nodes

One-to-one Placement

Node Resource Availability
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Link Resource Availability



Reinforcement Learning

Supervised Learning

Heuristics

Reinforcement learning (RL) has shown promising potential for the VNE problem

Background | Literature Review

Exact Methods

Traditional Methods

Provide optimal solutions

impractical for real-time scenarios
high computational costs.

offer faster solutions

often require manual design
are scenario-specific.

Machine Learning for VNE

Rely on labeled data

Solution construction 
process of VNR

Markov decision 
processes

(MDP)

Automatically learning 
of effective heuristics 
through interactions 
with the environment



Motivation A: Flexibility of Action Space

Background | Motivations & Challenges Inspired by Preliminary Study

Existing Methods

Figure 4 reveals that varying the decision sequences 
of virtual nodes significantly impacts performance

They employ a unidirectional action design, i.e., assuming

that decision sequence of virtual nodes is predetermined

Preliminary Study

Intuitive Direction

Achieve a joint selection of both physical and virtual nodes

 to enhance the flexibility of exploration and exploitation

Latent Challenges

The difficulty of variable action prob distribution generation 

The training efficiency issue caused by large action space



Motivation B. Generalization of Solving Policy

Background | Motivations & Challenges Inspired by Preliminary Study

Existing Methods

Figure 5 reveals that some size-specific policies are 
superior or to single-policy, while some are inferior.

They typically use a one-size-fits-all policy to tackle VNRs 
of varying sizes, leading to generalization issues

Preliminary Study

Intuitive Direction

Train a set of sub-policies directly to handle VNRs of 
different sizes from scratch

Latent Challenges

Specific policies trained from scratch encounter local optima

How to quickly adapt to handle previously unseen VNR sizes



A Flexible and Generalizable Reinforcement Learning Framework for Solve VNE problem

Method | Overview of FlagVNE Framework
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Allows the joint selection of virtual nodes and physical nodes.

Enhances the flexibility and comprehensiveness of exploration.

Method | A. Bidirectional Action-based MDP

Increased 
Flexibility

Improved 
Solution 
Quality

Latent Challenges

C1: Variable Action Space

The difficulty of variable action prob distribution generation

C2: Training Efficiency
The training efficiency issue caused by large action space



High-level Ordering Policy: Selects the virtual node to be placed based on compatibility scoring.

Low-level Placement Policy: Chooses the physical node to host the selected virtual node.

Method | B. Hierarchical Policy Architecture

Adaptive Action 
Probability 
Distribution

Ensure High 
training Efficiency

Hierarchical structure reduces the complexity of the distribution size: |𝑵𝒗|×|𝑵𝒑| → 𝑵𝒗 + 𝑵𝒑 	



Method | C. Generalizable Training Method

Efficient Training to Avoid 
Suboptimality

• Model-Agnostic Meta-Learning (MAML) 
• Treats VNRs of different sizes as distinct tasks.

• Obtain a set of size-specific policies and facilitates fast adaptation to new tasks with limited training samples.

• Progressive Task Inclusion 
• Gradually incorporates larger VNRs into the training process.

• Alleviates suboptimal convergence by ensuring high-quality initializations for large VNR tasks.

Improved 
Generalizability

Meta-RL Training Approach with Curriculum Scheduling Strategy
Efficient
Training



Experiment | Setup & Implementations

Simulation Environment

• Initial Meta-Learning: Conducted in the first 20 simulations.
• Fine-Tuning: Conducted in the subsequent 10 simulations.

Baselines

Heuristic Methods
• NRM-VNE

• NEA-VNE

• PSO-VNE

RL-based Methods
• MCTS-VNE

• PG-CNN

• A3C-GCN

• DDPG-Attention

Metrics
Request Acceptance Rate (RAC)

Long-term Average Revenue (LAR)

Long-term Revenue-to-Cost (LT-R2C)

Topologies of Physical Network
• GEANT: 40 nodes, 61 links.

• WX100: 100 nodes, 500 links.

VNR Generation:
• Quantity: 1000 VNRs per simulation run.

• Size: VNRs with 2 to 10 nodes.

• Resource Demands:

• Node resources within [0, 20] units
• Link bandwidth within [0, 50] units.

• Lifetime: Exponentially distributed with an average of 500 time units.

• Arrival Rate: Follows a Poisson process, varied to simulate different 
traffic throughputs.

Training Process



Experiment | Overall Performance

Both GEANT and WX100  Topology

FlagVNE demonstrates exceptional performance in terms of request acceptance, revenue 
generation, and cost-effectiveness across different network scenarios.

The improvements are more pronounced in environments with higher resource competition, 
underscoring the framework's robustness and efficiency.



Experiment | Ablation Study

To verify the effectiveness of each component in the FlagVNE framework by comparing variations.

FlagVNE-UniActionNEA
Replaces the bidirectional action with unidirectional action.
Uses Node Essentiality Assessment (NEA) for decision 
sequence.

FlagVNE-MetaFree-SinglePolicy
Trains a single general policy without the Meta-RL approach.

FlagVNE-MetaFree-MultiPolicy
Directly trains multiple policies from scratch without Meta-RL.

FlagVNE-MetaPolicy
Uses only the meta-policy for handling VNRs of all sizes.

FlagVNE-NoCurriculum
Discards the curriculum scheduling strategy during the meta-
learning process.

Variations of FlagVNE



Experiment | Additional Evaluation

Scalability Validation
Large-scale Topology:  500 nodes and 1000 links..

Running 
Time 
Test

Hyperpara
meter 

Sensitivity
Convergence 

Analysis



Conclusion | FlagVNE Framework

Preliminary Study
Issue A: Searchability - the unidirectional action design 
Issue A: generalizability - one-size-fits-all training strategy

FlagVNE Framework
A bidirectional action-based MDP model
• Jointly select of virtual and physical nodes
• Superior searchability and proven theoretically
A hierarchical decoder with a bilevel policy
• ensure adaptive action prob dist generation
• ensure high training efficiency
A meta RL-based training method
• efficient obtain multiple size-specific policies
• quick adaptation to new sizes
A curriculum scheduling strategy
• gradually incorporates larger VNRs
• alleviate suboptimal convergence

Extensive Experiments
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