

FlagVNE: A Flexible and Generalizable Reinforcement Learning Framework for Network Resource Allocation

Tianfu Wang, Qilin Fan, Chao Wang, Long Yang, Leilei Ding, Nicholas Jing Yuan, Hui Xiong

University of Science and Technology of China (USTC)

Background | Network Virtualization

Enable the dynamic management of Internet architecture (e.g., 5G networks and cloud computing)

Background | Virtual Network Embedding Problem

Maps VNRs to physical network with minimal resource cost while satisfying various constraints

Background | Literature Review

Reinforcement learning (RL) has shown promising potential for the VNE problem

Background | Motivations & Challenges Inspired by Preliminary Study

Motivation A: Flexibility of Action Space

Existing Methods

They employ a unidirectional action design, i.e., assuming that decision sequence of virtual nodes is predetermined

Intuitive Direction

Achieve a joint selection of both physical and virtual nodes to enhance the flexibility of exploration and exploitation

Latent Challenges

The difficulty of variable action prob distribution generation The training efficiency issue caused by large action space

Preliminary Study

Figure 4 reveals that varying the decision sequences of virtual nodes significantly impacts performance

Figure 4: Comparative performance of A3C-GCN variants on three metrics: Impact of decision sequence and size-specific policies on VNE. (We conduct experiments using WX100 as the physical network, with a VNR arrival rate of 0.18. All other settings remained consistent with those described in Section 5.)

Background | Motivations & Challenges Inspired by Preliminary Study

Motivation B. Generalization of Solving Policy

Existing Methods

They typically use a one-size-fits-all policy to tackle VNRs of varying sizes, leading to generalization issues

Intuitive Direction

Train a set of sub-policies directly to handle VNRs of different sizes from scratch

Latent Challenges

Specific policies trained from scratch encounter local optima How to quickly adapt to handle previously unseen VNR sizes

Preliminary Study

Figure 5 reveals that some size-specific policies are superior or to single-policy, while some are inferior.

Figure 5: Average returns of the one-fits-all-size policy and each size-specific policy on all testing VNR sizes. The red boxes indicate the best performance results for test sizes. In the horizontal axis, [2-10] indicates a well-trained A3C-GCN policy while a single number represents a size-specific policy derived from well-trained A3C-GCN-MultiPolicy. (We use WX100 as the physical network and all training settings are the same as those mentioned in Section 5. For testing data of each VNR size, to exclude network system dynamics for a fairer comparison, we randomly generated 1000 static instances, including VNR and physical networks, as the benchmark. The performance metric is defined as the average episode return over 1000 instances.)

Method | Overview of FlagVNE Framework

A Flexible and Generalizable Reinforcement Learning Framework for Solve VNE problem

A. Bidirectional Action-based MDP Joint selection of virtual & physical nodes Enhance the flexibility of agent exploration and exploitation **B. Hierarchical Policy Architecture** High-level ordering policy Select the appropriate virtual node for the low-level placement. Low-level placement policy Identify a suitable physical node for placing to-be-placed virtual node **Distribution Size:** $|N^{\nu}| \times |N^{p}| \rightarrow |N^{\nu}| + |N^{p}|$ Adaptively generate action prob dists and ensure high training efficiency. C. Generalizable Training Method Meta-RL for VNE Formulate varying VNRs as distinct MDPs based their size. Adopt model-agnostic meta-learning (MAML) as the basic training method Curriculum Scheduling Strategy Training large-size policies from scratch adversely impacting meta-learning Gradually increase the complexity of tasks during RL training Effectively obtain refined solving policies for each VNR size

Flexibility

Efficiency

Generalizability

(b) Bidirectional action-based MDP modeling within each inner loop (sub-policy π_{θ_0} for example)

Method | A. Bidirectional Action-based MDP

Allows the joint selection of virtual nodes and physical nodes. Enhances the flexibility and comprehensiveness of exploration.

Increased Flexibility Improved Solution Quality

Method | B. Hierarchical Policy Architecture

High-level Ordering Policy: Selects the virtual node to be placed based on compatibility scoring. Low-level Placement Policy: Chooses the physical node to host the selected virtual node.

Hierarchical structure reduces the complexity of the distribution size: $|N^{\nu}| \times |N^{p}| \rightarrow |N^{\nu}| + |N^{p}|$

Method | C. Generalizable Training Method

Meta-RL Training Approach with Curriculum Scheduling Strategy

- Model-Agnostic Meta-Learning (MAML)
 - Treats VNRs of different sizes as distinct tasks.
 - Obtain a set of size-specific policies and facilitates fast adaptation to new tasks with limited training samples.
- Progressive Task Inclusion
 - Gradually incorporates larger VNRs into the training process.
 - Alleviates suboptimal convergence by ensuring high-quality initializations for large VNR tasks.

(a) Generalizable training method for obtaining multiple size-specific sub-policies

Improved Generalizability

Efficient Training

Experiment | Setup & Implementations

Simulation Environment

Topologies of Physical Network

- GEANT: 40 nodes, 61 links.
- WX100: 100 nodes, 500 links.

VNR Generation:

- Quantity: 1000 VNRs per simulation run.
- Size: VNRs with 2 to 10 nodes.
- Resource Demands:
 - Node resources within [0, 20] units
 - Link bandwidth within [0, 50] units.
- Lifetime: Exponentially distributed with an average of 500 time units.
- Arrival Rate: Follows a Poisson process, varied to simulate different traffic throughputs.

Training Process

- Initial Meta-Learning: Conducted in the first 20 simulations.
- Fine-Tuning: Conducted in the subsequent 10 simulations.

Baselines

Heuristic Methods

- NRM-VNE
- NEA-VNE
- PSO-VNE

RL-based Methods

- MCTS-VNE
- PG-CNN
- A3C-GCN
- DDPG-Attention

Metrics

Request Acceptance Rate (**RAC**) Long-term Average Revenue (**LAR**) Long-term Revenue-to-Cost (**LT-R2C**)

Both GEANT and WX100 Topology

FlagVNE demonstrates exceptional performance in terms of request acceptance, revenue generation, and cost-effectiveness across different network scenarios.

The improvements are more pronounced in environments with higher resource competition, underscoring the framework's robustness and efficiency.

Figure 3: Experimental results in traffic throughput test.

Experiment | Ablation Study

To verify the effectiveness of each component in the FlagVNE framework by comparing variations.

Variations of FlagVNE

FlagVNE-UniActionNEA

Replaces the bidirectional action with unidirectional action.

Uses Node Essentiality Assessment (NEA) for decision sequence.

FlagVNE-MetaFree-SinglePolicy

Trains a single general policy without the Meta-RL approach.

FlagVNE-MetaFree-MultiPolicy

Directly trains multiple policies from scratch without Meta-RL.

FlagVNE-MetaPolicy

Uses only the meta-policy for handling VNRs of all sizes.

FlagVNE-NoCurriculum

Discards the curriculum scheduling strategy during the metalearning process.

	GEANT			WX100		
	RAC↑	LAR \uparrow	LT-R2C↑	$RAC\uparrow$	LAR \uparrow	LT-R2C↑
FlagVNE-UniActionNEA	0.781	475.335	0.637	0.724	14334.671	0.493
FlagVNE-MetaFree-SinglePolicy	0.758	472.455	0.614	0.712	14170.514	0.501
FlagVNE-MetaFree-MultiPolicy	0.746	435.502	0.593	0.685	14069.938	0.472
FlagVNE-MetaPolicy	0.773	478.646	0.634	0.717	14292.962	0.485
FlagVNE-NoCurriculum	0.787	485.267	0.643	0.708	14144.234	0.509
FlagVNE	0.804	499.303	0.668	0.754	14769.080	0.526

Table 1: Results on ablation study. ($\eta = 0.006$ on GEANT and $\eta = 0.18$ on WX100).

Figure 7: Learning curves for the unseen size. (There are 100 VNRs in one simulation and each VNR's size is set to 12).

Experiment | Additional Evaluation

Sc	Scalability Validation							
Large-scale Topology: 500 nodes and 1000 links.								
Algorithm	$ $ RAC \uparrow	LAR (×10 ⁶) \uparrow	LT-R2C↑					
NRM-VNE	0.631	0.710772	0.507					
NEA-VNE	0.857	1.186615	0.690					
PSO-VNE	0.805	1.042604	0.537					
MCTS-VNE	0.782	0.968175	0.563					
PG-CNN	0.851	1.046523	0.548					
A3C-GCN	0.869	1.147116	0.715					
DDPG-Attention	0.796	1.013670	0.617					
FlagVNE	0.932	1.347162	0.744					

		Average Runr	nning Time (s) \downarrow			
		GEANT	WX100			
	NRM-VNE	10.079	28.079			
	NEA-VNE	31.011	238.403			
Running	PSO-VNE	1330.706	1516.340			
Time Test	MCTS-VNE	240.195	679.007			
	PG-CNN	75.259	203.965			
	A3C-GCN	47.079	204.073			
	DDPG-Attention	81.713	164.355			
	FlagVNE	84.987	239.251			
	* The average simulation time (seconds) over various η					
	Table 2: Average running time in traffic throughput test.					

Conclusion | FlagVNE Framework

Preliminary Study

Issue A: Searchability - the unidirectional action design Issue A: generalizability - one-size-fits-all training strategy

FlagVNE Framework

A bidirectional action-based MDP model

- Jointly select of virtual and physical nodes
- Superior searchability and proven theoretically
- A hierarchical decoder with a bilevel policy
- ensure adaptive action prob dist generation
- ensure high training efficiency

A meta RL-based training method

- efficient obtain multiple size-specific policies
- quick adaptation to new sizes

A curriculum scheduling strategy

- gradually incorporates larger VNRs
- alleviate suboptimal convergence

Extensive Experiments

FlagVNE: A Flexible and Generalizable Reinforcement Learning Framework for Network Resource Allocation

> Tianfu Wang, Qilin Fan, Chao Wang, Long Yang, Leilei Ding, Nicholas Jing Yuan, Hui Xiong