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. Background | Network Virtualization

Enable the dynamic management of Internet architecture (e.g., 5G networks and cloud computing)
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. Background | Virtual Network Embedding Problem

Maps VNRs to physical network with minimal resource cost while satisfying various constraints
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NP-hard Combinatorial Optimization Problem
The extensive solution space requires comprehensive exploration

Combinatorial
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Characteristics o . . :
Differentiated Specific requirements of user service are diverse

VNRs have varied sizes and resource requirements
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. Background | Literature Review

Reinforcement learning (RL) has shown promising potential for the VNE problem

f N
Traditional Methods Machine Learning for VNE
Exact Methods Supervised Learning
Provide optimal solutions Rely on labeled data

impractical for real-time scenarios

high computational costs. Reinforcement Learning

Solution construction
| Hewsis processof VNR | Automatically learning
e s v of effective heuristics
offer faster solutions . through interactions
Markov decision ith th .
often require manual design processes with the environment
are scenario-specific. (MDP)




. Background | Motivations & Challenges Inspired by Preliminary Study

Motivation A: Flexibility of Action Space

Existing Methods

They employ a unidirectional action design, i.e., assuming
that decision sequence of virtual nodes is predetermined

Intuitive Direction

Achieve a joint selection of both physical and virtual nodes
to enhance the flexibility of exploration and exploitation

Latent Challenges

The difficulty of variable action prob distribution generation
The training efficiency issue caused by large action space

Preliminary Study

Figure 4 reveals that varying the decision sequences
of virtual nodes significantly impacts performance
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Figure 4: Comparative performance of A3C-GCN variants on three
metrics: Impact of decision sequence and size-specific policies on
VNE. (We conduct experiments using WX100 as the physical net-
work, with a VNR arrival rate of 0.18. All other settings remained
consistent with those described in Section 5.)
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. Background | Motivations & Challenges Inspired by Preliminary Study

Motivation B. Generalization of Solving Policy
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Existing Methods Preliminary Study

They typically use a one-size-fits-all policy to tackle VNRs

. . . TN Figure 5 reveals that some size-specific policies are
of varying sizes, leading to generalization issues 9 P P

superior or to single-policy, while some are inferior.
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Train a set of sub-policies directly to handle VNRs of
different sizes from scratch

Testing VNR Size

Latent Challenges Tining VNR Sz

Figure 5: Average returns of the one-fits-all-size policy and each
size-specific policy on all testing VNR sizes. The red boxes indi-

T£1 e 7 2 H cate the best performance results for test sizes. In the horizontal
Specific policies trained from scratch encounter local optima oxis, [2.10) inficatos a well-trained A3C.GCN policy whill a single
. . . number represents a size-specific policy derived from well-trained

How to quickly adapt to handle previously unseen VNR sizes A3C-GCN-MultiPolicy. (We use WX100 as the physical network

and all training settings are the same as those mentioned in Section 5.
For testing data of each VNR size, to exclude network system dy-
namics for a fairer comparison, we randomly generated 1000 static
instances, including VNR and physical networks, as the benchmark.
The performance metric is defined as the average episode return over
1000 instances.)



. Method | Overview of FlagVNE Framework

A Flexible and Generalizable Reinforcement Learning Framework for Solve VNE problem

Flexibility

iciency

Eff

Generalizability

A. Bidirectional Action-based MDP

Joint selection of virtual & physical nodes

Enhance the flexibility of agent
exploration and exploitation

B. Hierarchical Policy Architecture

High-level ordering policy
Select the appropriate virtual node for
the low-level placement.
Low-level placement policy
Identify a suitable physical node for
placing to-be-placed virtual node
Distribution Size: |N?|x|N?| — |N?| + |NP|

Adaptively generate action prob dists
and ensure high training efficiency.

C. Generalizable Training Method

Meta-RL for VNE

Formulate varying VNRs as distinct MDPs
based their size.

Adopt model-agnostic meta-learning
(MAML) as the basic training method
Curriculum Scheduling Strategy
Training large-size policies from scratch
adversely impacting meta-learning
Gradually increase the complexity of
tasks during RL training

Effectively obtain refined solving policies
for each VNR size
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(b) Bidirectional action-based MDP modeling within each inner loop (sub-policy 7, for example)




. Method | A. Bidirectional Action-based MDP

Allows the joint selection of virtual nodes and physical nodes. Increased Ignopilz%\;end
Enhances the flexibility and comprehensiveness of exploration. Flexibility Quality
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. Method | B. Hierarchical Policy Architecture

High-level Ordering Policy: Selects the virtual node to be placed based on compatibility scoring.

Low-level Placement Policy: Chooses the physical node to host the selected virtual node.

Hierarchical structure reduces the complexity of the distribution size: |[NV|X|NP| — |[NY| + |NP|

Adaptive Action
Probability
Distribution

Ensure High
training Efficiency

Policy Model Architecture g,

Hierarchical
Decoder

High-level Ordering Policy 71'9’: (Virtual Node ny)

Compatibility

Feature GNN-based
Constructor Encoder
@ » . |
\ p Connection Virtual
./—-. Node
' Representation
> —r— é
Features of . LLL LT
Virtual
e ot GCN Layers

/.—. Skip Connection Physical
._\/A Node .
% Representation

Features of
Physical
Network

Score Network

Masked
Softmax
Layer

P(nf|se)
o0

Max 0

A 4

Compatibility

Score Network

Masked
Softmax
Layer

P(nf|se,nf)

» “=@




. Method | C. Generalizable Training Method

Meta-RL Training Approach with Curriculum Scheduling Strategy

Improved Efficient

+ Model-Agnostic Meta-Learning (MAML) Generalizability Training
« Treats VNRs of different sizes as distinct tasks.

« Obtain a set of size-specific policies and facilitates fast adaptation to new tasks with limited training samples.

« Progressive Task Inclusion
 Gradually incorporates larger VNRs into the training process.
« Alleviates suboptimal convergence by ensuring high-quality initializations for large VNR tasks.
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. Experiment | Setup & Implementations

Simulation Environment
Topologies of Physical Network
« GEANT: 40 nodes, 61 links.
« WX100: 100 nodes, 500 links.
VNR Generation:
« Quantity: 1000 VNRs per simulation run.
Size: VNRs with 2 to 10 nodes.
« Resource Demands:

« Node resources within [0, 20] units
« Link bandwidth within [0, 50] units.

« Lifetime: Exponentially distributed with an average of 500 time units.

« Arrival Rate: Follows a Poisson process, varied to simulate different
traffic throughputs.

Training Process

 Initial Meta-Learning: Conducted in the first 20 simulations.
« Fine-Tuning: Conducted in the subsequent 10 simulations.

Baselines

Heuristic Methods

NRM-VNE
NEA-VNE
PSO-VNE

RL-based Methods

MCTS-VNE
PG-CNN
A3C-GCN
DDPG-Attention

Metrics

Request Acceptance Rate (RAC)

Long-term Average Revenue (LAR)

Long-term Revenue-to-Cost (LT-R2C)



. Experiment | Overall Performance

Both GEANT and WX100 Topology

FlagVNE demonstrates exceptional performance in terms of request acceptance, revenue

generation, and cost-effectiveness across different network scenarios.

The improvements are more pronounced in environments with higher resource competition,
underscoring the framework's robustness and efficiency.
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Figure 3: Experimental results in traffic throughput test.
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. Experiment | Ablation Study

To verify the effectiveness of each component in the FlagVNE framework by comparing variations.

Variations of FlagVNE

FlagVNE-UniActionNEA
Replaces the bidirectional action with unidirectional action.

Uses Node Essentiality Assessment (NEA) for decision
sequence.

FlagVNE-MetaFree-SinglePolicy
Trains a single general policy without the Meta-RL approach.

FlagVNE-MetaFree-MultiPolicy

Directly trains multiple policies from scratch without Meta-RL.

FlagVNE-MetaPolicy
Uses only the meta-policy for handling VNRs of all sizes.

FlagVNE-NoCurriculum

GEANT WX100
RACT LART LIR2CT | RACT LART LIR2CT
FlagVNE-UniActionNEA 0.781  475.335 0.637 0.724  14334.671 0.493
FlagVNE-MetaFree-SinglePolicy | 0.758  472.455 0.614 0.712  14170.514 0.501
FlagVNE-MetaFree-MultiPolicy | 0.746  435.502 0.593 0.685  14069.938 0.472
FlagVNE-MetaPolicy 0.773  478.646 0.634 0.717  14292.962 0.485
FlagVNE-NoCurriculum 0.787  485.267 0.643 0.708 14144.234 0.509
FlagVNE | 0.804  499.303 0.668 | 0.754 14769.080 0.526
Table 1: Results on ablation study. (7 = 0.006 on GEANT and 7 = 0.18 on WX100).
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Figure 7: Learning curves for the unseen size. (There are 100 VNRs
in one simulation and each VNR’s size is set to 12).



. Experiment | Additional Evaluation

Scalability Validation

Average Running Time (s) |
Large-scale Topology: 500 nodes and 1000 links.. GEANT WX100
: 5 NRM-VNE 10.079 28.079
Algorithm | RAC1T LAR(x10°)1 LT-R2C? . NEA-VNE 31.011 238.403
NRM-VNE 0.631 0.710772 0.507 Runnlng PSO-VNE 1330.706 1516.340
NEA-VNE 0.857 1.186615 0.690 Time MCTS-VNE 240.195 679.007
PSO-VNE 0.805 1.042604 0.537 Test PG-CNN 75.259 203.965
MCTS-VNE | 0782  0.968175 0.563 A3C-GCN 47.079 204.073
PG-CNN 0.851 1046523 0.548 PDEG-Attention | 8 2 S
A3C-GCN | 0869  1.147116 0.715 FlagVNE 987 o
DDPG-Attention | 0.796 1.013670 0.617 " The average simulation time (seconds) over various 7
FlagVNE | 0.932 1.347162 0.744 Table 2: Average running time in traffic throughout test.
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Figure 6: Learning curves over simulations. Within each simulation,
there are 1000 VNRs, i.e., 1000 episodes and we average their re- ) )
turns. (77 = 0.001 on GEANT and n= 0.06 on WXIOO) Flgure 8: The mmpact of 4 on FlagVNE’s performance. (77 =0.001

on GEANT and 7 = 0.06 on WX100.)



. Conclusion | FlagVNE Framework

Preliminary Study

Issue A: Searchability - the unidirectional action design
Issue A: generalizability - one-size-fits-all training strategy

FlagVNE Framework

A bidirectional action-based MDP model

« Jointly select of virtual and physical nodes

« Superior searchability and proven theoretically
A hierarchical decoder with a bilevel policy

« ensure adaptive action prob dist generation
« ensure high training efficiency

A meta RL-based training method

« efficient obtain multiple size-specific policies
« quick adaptation to new sizes

A curriculum scheduling strategy

« gradually incorporates larger VNRs

« alleviate suboptimal convergence

Extensive Experiments
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(b) Bidirectional action-based MDP modeling within each inner loop (sub-policy 7, for example)
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