

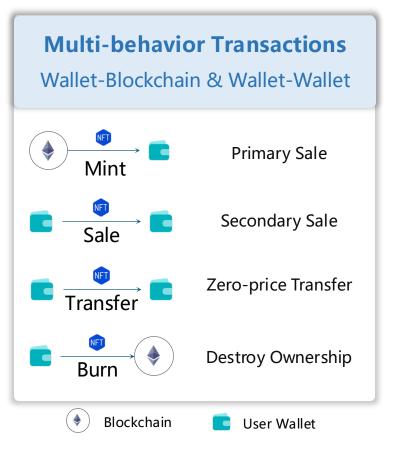
COMET: NFT Price Prediction with Wallet Profiling

Tianfu Wang, Liwei Deng, Chao Wang, Jianxun Lian, Yue Yan, Nicholas Jing Yuan*, Qi Zhang, Hui Xiong*

Non-fungible Token (NFT)

NFTs are unique digital assets that certify ownership and authenticity via blockchain.

- Uniqueness: Each NFT is distinct and topically associated with digital files
- Transparency: NFT Metadata and Transactions are publicly accessible



Research Objective

Existing Challenges

Ambiguous and incomplete problem definitions and evaluation method
Leverage valuable information from publicly accessible user behaviors
Identify potential price trend correlations among NFTs and between NFTs and wallets

Main Contributions of Our Work

Addressing the Gaps
Definitions and Evaluation

Mining Social Impact
Wallet Profiling with Graph

Practical Deployment
Infra. &Product Application

Work	Problem Definition			Methodology	Eva	aluation
	Price-level	Target	Task Type		Dataset	Metrics
[25]	Token	Asset Value	Correlation	Correlation Analysis	1.4M Tokens	Fitting error
[35]	Token	Asset Value	Correlation	Correlation Analysis	48K Tokens	R^2
[9]	Token	Asset Value	Classification	Multimodal Learning	4.7M Tokens	Precision; Recall; F1
[19]	Token	Asset Value	Classification	LightGBM; XGBoost; etc	62K Tokens	ACC; F1
[27]	Token	Asset Value	Regression	Linear Regression	4.7M Tokens	R^2
[4]	Collection	Daily Price	Correlation	Correlation Analysis	4 Collections	/
[23]	Collection	Daily Price	Regression	NLP sentiment and MLP	19 Collections	MAE; ACC; F1
[18]	Collection	Daily Price	Regression	RNN; Linear regression	1 Collections	MSE; ACC
Ours	Collection	Aggregated Price	Classification	Temporal Heterogeneous	100 Collections	ACC; MCC
	Token	Sale Price	Regression	Graph Learning	1.5M Tokens	MSE; MAE

Wallet Profiling For NFT Price Prediction

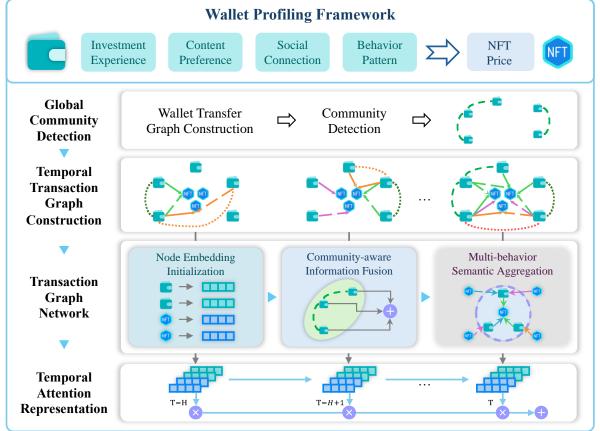
Create a comprehensive profile of a digital wallet within the NFT ecosystem.

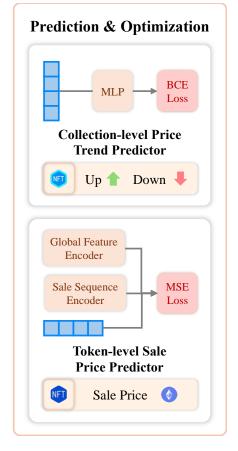
Investment Experience asset & profitability of wallet

Content Preference popularity of NFT

Social Connections
latent similarity among wallets

Behavior Patterns dynamic trading strategies





Wallet Profiling: Hierarchal Problem Definition

Both tasks at collection and token levels effectively caters to address diverse needs of users

- Manual Aggr. Price of Collection: Overall trends from a macroeconomic perspective
- Token-specific Trading Only: Detailed insights into specific decisions

Collection-level Price Trend Prediction

Allow investors to stay informed about the changing trends

Classification

Up / Down

$$\hat{y}_c = \mathcal{F}_c(\{\mathcal{X}_c^t \mid t \in [T - H, T]\})$$

Token-level Sale Price Prediction

Estimate future sale prices at which individual NFT tokens are sold

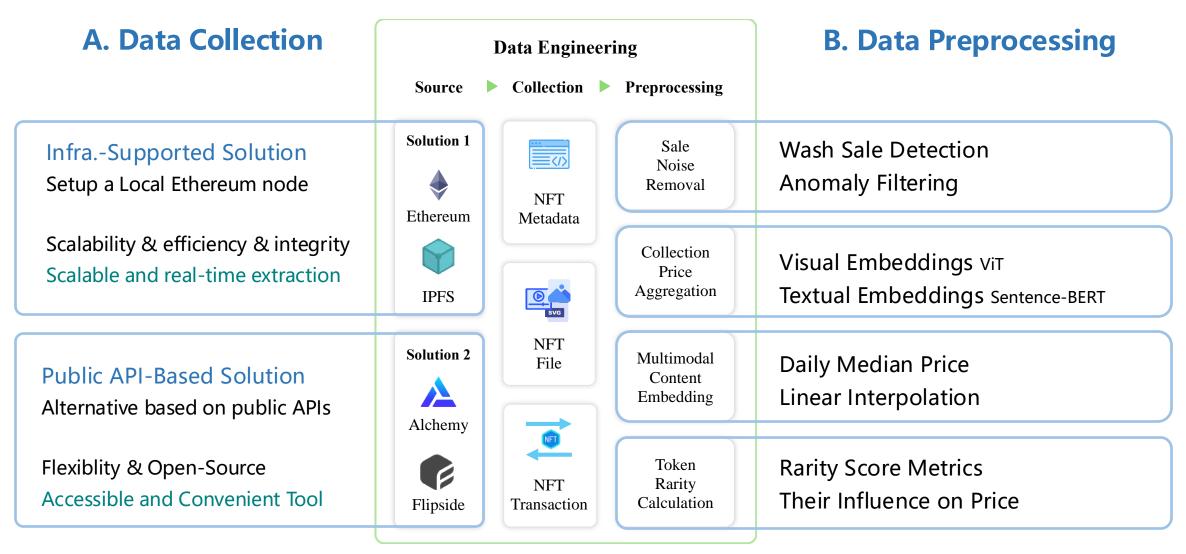
Regression

Sale Price

$$\hat{y}_u = \mathcal{F}_u \left(S_u; \mathcal{F}_c \left(\left\{ X_c^t \mid t \in [T - H, T] \right\} \right) \right)$$

Wallet Profiling: NFT Data Engineering

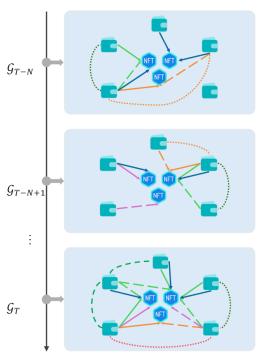
Collect NFT-related data and perform pre-processing to obtain insightful data

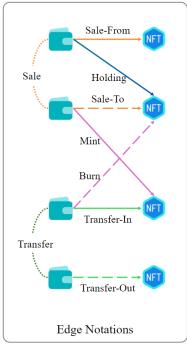


Wallet Profiling: COMET Model

Temporal Transaction Graph Construction

- Multi-behaviours Transactions: Multifaceted interactions between wallets and collections
- Segment & Construction: A series of snapshot transaction graphs



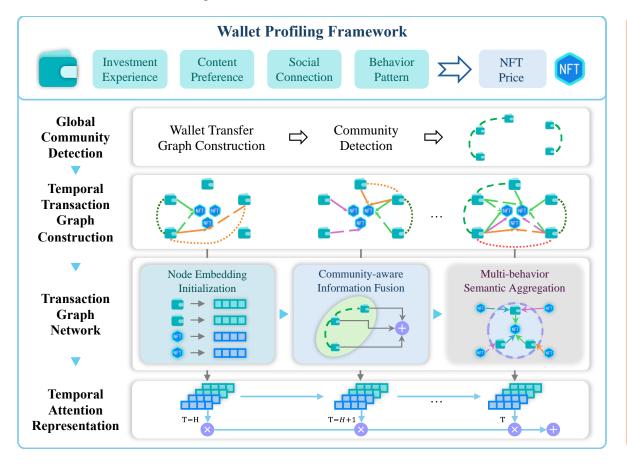


Static Visual embedding An embedding re	presenting the visual content associated with the collection.
	Presenting the visual content appearance with the concentration
Static Textual embedding An embedding re	presenting the textual content associated with the collection.
Static Total count of token supply Total number of t	okens supplied in the collection.
Collection Node Dynamic Daily price Daily price of the	collection, providing a historical price trend.
Dynamic Daily transaction counts Daily counts of m	aints, sales, transfers, and burns of the collection.
Dynamic ETH-to-USD exchange rate Daily exchange ra	ate of Ethereum (ETH) to US Dollars (USD).
Dynamic Total sale Volume Total sale volume	of the collection over one day.
Dynamic Daily transaction counts Daily counts of m	nints, sales, transfers, and burns of the wallet.
Wallet Node Dynamic Total holding count Total count of NF	T tokens held by the wallet.
Dynamic Total asset value Total value of asset	ets held in the wallet.
Holding Edge Dynamic Owned token count Number of NFT to	okens in one collection owned by the wallet.
Sale-from Edge Dynamic Sale Price Price at which an	NFT token was sold.
Sale-to Edge Dynamic Sale Price Price at which an	NFT token was sold.
Transfer-in Edge	
Transfer-out Edge	
Mint Edge	
Burn Edge	
Sale Edge Dynamic Sale Price Price at which an	NFT token was sold.
Transfer Edge	

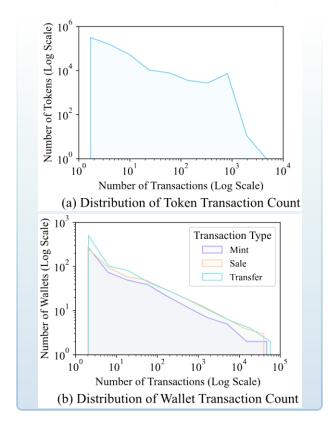
Wallet Profiling: **COMET Model**

COmmunity enhanced Multi-bEhavior Transaction graph model

- Temporal Transaction Graph Network to capture social impact and market dynamic
- Community-aware Information Fusion Module to alleviating data sparsity issues



Issues of Data Sparsity



Experimental Analysis

A. Collection-level Task Results

Algorithm	1-step		3-step		5-step	
Algorithm	ACC ↑	MCC ↑	ACC ↑	MCC ↑	ACC ↑	MCC ↑
RF	0.5627	-0.0017	0.5476	-0.003	0.5675	0.0371
SVM	0.5678	0.0537	0.5668	0.0197	0.5884	0.0419
XGBoost	0.5640	0.0665	0.5616	0.099	0.5755	0.1119
MLP	0.5513	0.0620	0.5792	0.1365	0.5808	0.1123
LSTM	0.5776	0.1372	0.5840	0.1348	0.5843	0.1237
TCN	0.5781	0.1387	0.5890	0.1386	0.5978	0.1698
ALSTM	0.5893	0.1537	0.5977	<u>0.1681</u>	0.5946	0.1329
D-Linear	0.5663	0.0451	0.5695	0.0427	0.5910	0.0680
N-BEATS	0.5835	0.1112	0.5902	0.1425	0.6029	0.0262
Informer	0.5505	-0.0173	0.5894	0.1266	0.5841	0.0262
Autoformer	0.5668	0.1063	0.5645	0.1422	0.6079	0.1479
COMET	0.6075	0.1861	0.6158	0.2092	0.6214	0.2128

B. Token-level Task Results

Almoniahan	1-step		3-step		5-step	
Algorithm	MAE ↓	MSE ↓	MAE ↓	$MSE\downarrow$	MAE ↓	MSE ↓
RF	0.4723	2.1812	0.4757	2.2164	0.4743	2.1892
SVR	0.4901	2.2098	0.4849	2.1602	0.4921	2.2178
XGBoost	0.4815	2.1524	0.4950	2.2175	0.4835	2.1604
MLP	0.4181	1.9728	0.4305	2.0321	0.4201	1.9808
LSTM	0.3689	1.775	0.3638	1.7831	0.3679	1.7836
TCN	0.3859	1.9224	0.4003	1.9808	0.3796	1.8904
ALSTM	0.3631	1.7523	0.3714	1.8054	0.3601	1.7209
COMET	0.3442	1.5825	0.3379	1.619	0.3395	1.5643
w/o CE	0.3529	1.6163	0.3424	1.6370	0.3479	1.6005
w/o TF	0.3576	1.6394	0.3561	1.6793	0.3606	1.6674

Ablation Study

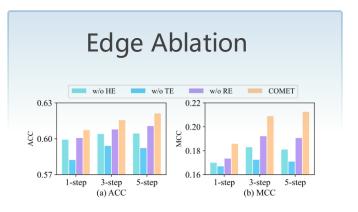


Figure 4: Results of edge ablation.

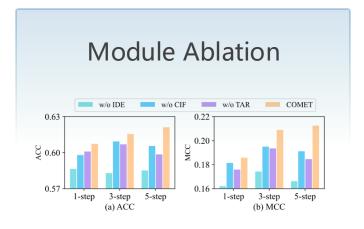


Figure 5: Results of module ablation.

Experimental Analysis

Feature Importance Analysis

Most Influential Features historical prices sale volumes of collections visual > textual embeddings

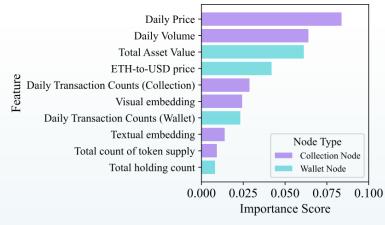


Figure 6: Top 10 feature importances.

Effectiveness in Different Collections

Similar token counts
But differ in transaction counts.

Higher transaction counts More significant improvements

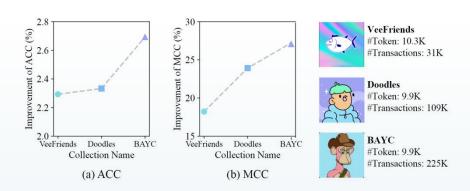
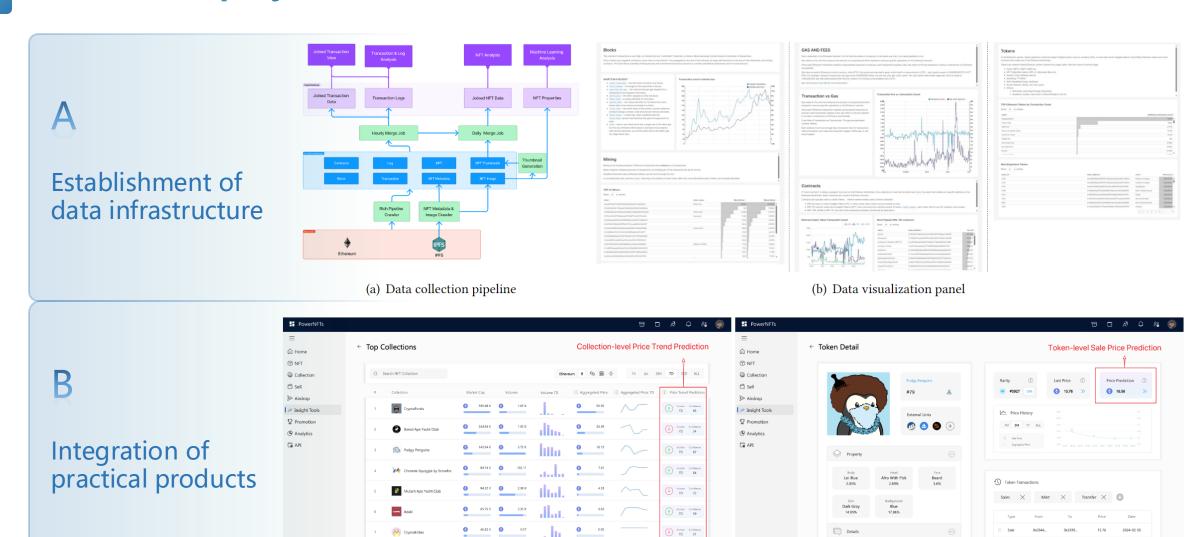


Figure 7: Performance improvements of COMET compared to ALSTM cross different collections (5-step).

Practical Deployment



70 90

(c) Top collections interface in PowerNFT

⊘ 43.54 K **⊘** 323.89 **⊘** 44.30

(d) Token details interface in PowerNFT

COMET: NFT Price Prediction with Wallet Profiling

Tianfu Wang, Liwei Deng, Chao Wang, Jianxun Lian, Yue Yan, Nicholas Jing Yuan, Qi Zhang, Hui Xiong

tianfuwang@mail.ustc.edu.cn nicholas.yuan@microsoft.com xionghui@ust.hk